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Abstract—This paper investigates the dependence of breakdown pressure, the critical pressure at
which tensile failure of the rock is initiated by injecting fluid in a borehole, on the rate of pressur-
ization. The mathematical model explicitly accounts for the existence of micro-cracks at the borehole
wall that trigger the failure process. Breakdown, in this context, occurs when the stress intensity
factor of a critically oriented micro-crack reaches the rock toughness. The model is presently
restricted to low-permeability/low-porosity rocks. By considering one-dimensional lubrication flow
in the crack coupled with the non-local elastic response of the crack, the evolution of the net
pressure, crack opening and stress intensity factor is obtained as functions of the pressurization
rate. The relation between breakdown pressure and pressurization rate in the case of zero initial net
pressure is shown to be controlled by only one dimensionless number : the ratio between the initial
width of the unstressed micro-crack and the induced elastic opening at failure. It is further shown
that (i) the fluid pressure in the early stages of the pressurization history drops in the crack and that
cavitation can occur, and (ii) local back-flow in the crack takes place. The dependence of breakdown
pressure, p,, on the pressurization rate, 4, is determined as well as the range of 4, where p, varies
significantly. The lower and pseudo upper bounds of this range of pressurization rate correspond
to limiting regimes of slow and pseudo fast pressurization. © 1997 Elsevier Science Ltd.

NOMENCLATURE

borehole radius

fluid pressure

initial fluid pressure

borehole pressure

time

characteristic time

position

crack width

initial width at crack inlet

characteristic crack width

pressurization rate

plane strain elastic modulus

tensile strength

toughness

far-field mean pressure

far-field stress deviator

crack length

fluid viscosity

crack loading, according to the Lamé solution
dimensionless time

dimensionless space coordinate
dimensionless net crack loading
dimensionless stress intensity factor
dimensionless crack width

dimensionless initial crack width at the inlet
dimensionless elastically induced crack width (Q = Q,+Q,)
dimensionless pressurization rate
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INTRODUCTION

The breakdown pressure, p,. the critical pressure at which tensile failure (“breakdown™) is
initiated at a borehole wall by fluid injection, is a crucial parameter in hydraulic fracturing
tests carried out to determine the in-situ stress field in a rock mass. This method consists in
hydraulically pressurizing an interval of a vertical borehole to initiate and propagate two
symmetric vertical fractures in the direction perpendicular to the minimum compressive in-
situ stress (Haimson (1978)). The pressure-time record is then interpreted to provide
estimates of the in-situ stress. In particular, the peak pressure or breakdown pressure is
indicative of the initiation of a fracture at the borehole wall.

Several breakdown criteria (Hubbert and Willis (1957), Haimson and Fairhurst (1967))
have been proposed to relate the value of p, to the far-field stress and rock properties.
However, these criteria predict the breakdown pressure p, to be independent of the pre-
ssurization rate A, despite strong experimental evidence indicating that p, does vary with
A,1.e., p, = pp(A) (Haimson and Zhao (1991), Schmitt and Zoback (1992), (1993)). Recent
studies (Detournay and Cheng (1992), Detournay and Carbonell (1994)) actually suggest
that the classical breakdown criteria correspond to the slow and fast asymptotic regimes of
pressurization rate, under the limiting condition that the length 4 of pre-existing defects
(which trigger the tensile failure process) is small compared to the borehole radius a. Thus,
the task of determining this relation and the bounds of the range of 4, where the breakdown
pressure varies significantly with the pressurization rate, appears to be important for
interpreting results of in-situ hydraulic fracturing stress tests.

An attempt to model the dependence of the breakdown pressure on the pressurization
rate in permeable rock was previously made by introducing a length scale 4 to characterize
the failure process and by assuming that breakdown takes place when the Terzaghi effective
stress, averaged over A, reaches a critical value (Detournay and Cheng (1992)). Threshold
values of the pressurization rate, 4, and A,, for slow and fast asymptotic regimes, respec-
tively, were then obtained by considering the evolution of the pore-pressure perturbation
near the permeable boundary of the borehole. The values 4, and A4, calculated for typical
sets of material parameters are, however, much higher than those observed in experiments,
and their ratio is also two to three orders of magnitude higher than the experimental values.
Finally, such a model is not really appropriate for low-permeability rocks, where pore-
pressure diffusion in the rock matrix is negligible over the duration of the experiment.

Thus, in order to improve the prediction of bounds 4, and 4, and to incorporate the
case of low-permeability rock, we explicitly take into account the existence of micro-cracks
at the boundary of the borehole and fluid flow in these micro-cracks to calculate the
conditions leading to failure. The micro-cracks could either be material defects (initially
present in the rock) or be the result of stress relief following drilling of the hole. The defects
are defined by the length / and initial opening (at zero net pressure) w,. Both values are
assumed to be characteristics of the in-situ rock. We will narrow our investigation to the
case when leakage from the micro-crack is negligible (which is a valid approximation for
low permeability rocks).

The objectives of this paper are two-fold: firstly to investigate features of the net
pressure evolution in the micro-crack during pressurization of the borehole ; secondly to
find the asymptotic slow and fast pressurization regimes and their dependence upon the set
of dimensionless parameters which characterize the geometry of the crack, the elastic
properties of the rock and the initial loading.

PROBLEM DESCRIPTION AND GOVERNING EQUATIONS

Problem definition

Consider a borehole with radius ¢ in an elastic domain with length scale L under
internal fluid pressure p, and far-field loading characterized by isotropic and deviatoric
components, P, and S, respectively. Consider also a critically oriented crack of length 4 at
the edge of the borehole, which is aligned with the far-field maximum compressive stress
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a) b)

Fig. 1. Problem description and one-dimensional approximation by an edge-crack.

direction (see Fig. 1a). Assuming that L >» a » A, the defect can actually be treated as an
edge crack of a half-plane subjected to a far-field loading ¢ in the direction perpendicular
to the crack (see Fig. 1b and Fig. 2). With this assumption, the borehole radius a is
effectively removed as a parameter controlling this problem. Making this assumption we
exclude any borehole size effect on the solution of the problem. The loading ¢ then
corresponds to the hoop stress that exists at the hole boundary in the absence of a crack ;
according to Lamé solution,

o(ty = 2P,—4S,—-p,.(0). (D

We assume that the fluid pressure p in the crack is initially equilibrated, and therefore equal
to the initial pressure in the borehole p,.(0) = p,. Furthermore, we consider here the case of
zero initial net crack loading—i.e., p(0) —a(0) = 0. (If the initial net loading on the crack
is negative, the crack is closed and the system evolution is trivial until p—o = 0.)

Governing equations

For typical values of parameters characterizing the crack geometry and the elastic
properties of the rock and the fluid, it can be shown that the fluid compressibility has no
effect in this problem (see Appendix A). Hence, the governing equation for the flow inside

Fig. 2. Description of the edge crack problem.
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the crack is given by the lubrication equation for incompressible fluid, or Reynolds equation
(Shapiro (1954))

1 ¢ ap ow
Sl Yt ) 2
124 ax<” Eix) ot @
which is obtained by combining the fluid mass balance equation
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with Poiseuille law
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In the above, g is the volumetric flow rate, u the fluid viscosity, p the fluid pressure, and w
the crack opening.

The other governing equation is an elasticity relation between the crack opening w and
the net crack loading (p— o). This relation is an integral equation which can be expressed
as (Paris et al. (1976))

5

2 2 2 n
W=, 1—-<§> +-EE;J;(J‘[p(C,0-—0(0]ndl;n)d5>ndx;n)ndn ®)

0

where m is the Bueckner-Rice (1970, 1972) weight function, and E’ is the so-called plane

strain modulus, which is related to Young’s modulus E and Poisson ratio v by £' =

E/(1 —v?). Note that an initial opening distribution (equal to w, at the crack inlet) at zero

net crack loading has been added in (5) to the elastically induced crack width. Both the

initial opening w, and the length A of the micro-crack are assumed to be material parameters.
The weight function m for an edge crack can be written as

PACE x/A
m(x; i) = 2(—) el (©6)
n) (A =x7)
where we adopt the approximation for f(£) proposed by Nilson and Proffer (1984)
S =% —x:¢ M

with y, = 1.3 and %, = 0.3. (Note that, for a Griffith crack, x, = l and 3, = 0 or f({) = 1.)
Initial-boundary conditions are as follows

p=p, att=0
p=pu) atx=0

w3g]Z

ax=0 atx =4 8

where the last equation prescribes a no-flow condition at the crack tip. Here we consider
specifically the case where the borehole pressure varies linearly in time,
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Pw = Pot+ Al %

where A is the constant pressurization rate.

It is interesting to point out that the no-flow condition at the crack tip does not
necessarily imply that the pressure gradient vanishes at x = 4, since the crack width is equal
to zero at that point. An expression for the pressure gradient at x = 4 can actually be
derived from consideration of the crack tip asymptotics. First note that the fracture width
near the tip (i.e., 1 —x/4 « 1) is given by (Rice (1968))

w = a(OAA—x)]"?  with Ai—x « / (10)

where the dimensionless coefficient a(?) is

w, 4K,(1)
a(t) = |:7 + —‘(nl)l/zE’]'

Integrating the continuity eqn (2) over a small interval adjacent to the tip and making use
of (10) yields

8K, (2\'" |
=3—El<;t—> (A—x)¥? with/—x «< A an

{Note that the dependance on time of these asymptotic fields is through the stress intensity
factor K,.) Finally, by comparing (4) and (11), we deduce that the pressure gradient at the
crack tip is finite and given by

d 16uK,(t .
Fi:——%% atx— 2 (12)
VTATE (D)

where K, denotes the rate of change of the stress intensity factor.

Condition for breakdown

The condition at which breakdown will occur is of concern in this paper. At breakdown,
the stress intensity factor K; reaches the critical value K. (the rock toughness) and the crack
starts to propagate. The stress intensity factor is given by the following integral relation in
terms of the Bueckner-Rice weight function m (Bueckner (1970), Rice (1972))

Ki(1) = J}'[p(x, n—a(nlm(x; 1) dx. (13)

0

Using expression (6) for m, the breakdown condition, K, = K,.,, can be conveniently
rewritten as

ijmLo—vanﬂwmdxzr 14)

X7 Jo \/ﬂz—xz

where the “tensile strength” of the rock 7 and the number y are given by

T=

K 2 A x/A
! ’X=4J;ﬂzlﬂx:Ln. (15)
XS A T

0 /AT —x?

If the net crack loading is uniform—i.e., p(x, ) — a(f) = o4(1)—the breakdown condition
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simply corresponds to o, = 7. Under conditions of “‘slow” pressurization, for example, the
fluid pressure in the crack is virtually the same as the pressure in the borehole—i.e.,
p(x, 1) = p.(7); hence, the breakdown condition (14) simply becomes

Po—Po = (16)

SIS

where p, is the breakdown pressure. This is indeed the criterion proposed by Haimson and
Fairhurst (1967). On the other hand, if the fluid pressure in the crack is the same as the
initial pressure—i.c., p(x, 1) = p, (assuming that such a state can exist)—then the breakdown
pressure is deduced from (14) to be

po—p,=T. (17)

The above criterion is formally equivalent to the Hubbert-Willis breakdown condition
(1957).

EVOLUTION OF CRACK OPENING AND FLUID PRESSURE

Dimensional considerations

The solution for the given initial-boundary value problem (2)—(9) depends on a set of
6 parameters: the elastic modulus of the rock E’, the two lengthscales characterizing the
micro-crack geometry, / and w,, the rock “tensile strength” T (which depends on the crack
length 4), the fluid viscosity y, and the rate of pressurization A. Since the initial net crack
loading is assumed to be zero (i.e., p,—o(0) = 2P,—4S,—2p, = 0), none of the loading
parameters P,, S, and p, directly influences the solution. Furthermore, 4 and £ appear in
the elasticity eqn (5) only through the ratio A/E’, once the double integral in this equation
has been made dimensionless. Hence, according to dimensional analysis, two numbers are
governing the breakdown process. Here, we chose these two numbers as a dimensionless
initial width at the crack inlet Q, and a dimensionless rate of pressurization y respectively
defined as

Q, =— (18)
Wy

, Al 19

V=7 (19)

where w, is a measure of the elastically induced crack opening at breakdownt

AT

=% (20)

Wy

where ¢, is the timescale

t The exact expression for the opening at the crack mouth at breakdown (i.e., K, = K,), under condition of
uniform fluid pressure, is given by

8
w=w,+ pd (xl g —xz)w* até=0 if(p—0a)=T

where the coefficient of proportionality in front of w, is equal to 4 for Griffith crack and to approximately 5.767
for the edge crack.
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This timescale can be interpreted as a measure of the time required to equilibrate a fluid
pressure perturbation at pressure close to breakdown, when Q, « 1. Thus the number Q,
is proportional to the ratio of the initial crack opening and the elastically induced opening
at breakdown, while y represents the ratio of the characteristic time to a measure of the
time required to reach breakdown.

Finally, we introduce the following dimensionless variables and field quantities: the
position variable ¢ = x/4 (0 < & < 1), the time 7 = ¢/1, (r = 0), the net crack loading
(¢, 1) =(p—0)/T, and the crack width Q(&, 1) = w/w,.

The fact that the tensile strength 7 only enters in the list of parameters through the
breakdown condition (14) (i.e., the evolution of the crack opening w and net pressure p—o
does not depend on 7') has some implications on the dependance of these functions on the
parameters y and Q,. Indeed, without first considering the breakdown condition, we can
deduce from the Reynolds (2) and elasticity eqn (5), together with the initial/boundary
conditions that

I =115y
QO =Q( 1) (22)

where the new dimensionless quantities (denoted by a prime) are defined as

12474
s il (23)

E “a

(p—oa) g _ tE'w}

H’ = 7 1) ® T = >
W, E W, 1 2#2 3

(Note that 7’ is the time scaled by t. = 12ui’/wE’, which can be interpreted as the
characteristic time associated with equilibration of a fluid pressure perturbation in the crack
at the initial opening w,.) It can readily be established that the primed and unprimed
quantities are related as follows

Mm=Q;1l, =0Q'Q v=Q~1 y=Q 7% (24
from which we conclude that

M, 757,Q,) = QINE Qlr;Q, %)
Q& 137,Q,) = QQ(E Q)T Q). | (25)

The main implication of the above relationship is that once the two functions IT and Q
have been determined for a particular value of Q, (for0 < < 1,0< 1< 0,0 <y < %0),
they can be computed for any other values of Q, through simple scaling of I1, Q, t, and y.

Dimensionless form of the governing equations

The solution of the original initial-boundary value problem (2), (5), (8). (9) is equi-
valent to solving the following set of coupled non-linear integro-differential equations for
II(&, 1) and Q(&, 1)
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Qo ol
23w
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mleLdo =02 1 /P&

subjected to initial and boundary conditions

[I=0 atz=0
M=2yr até=0

Q3a—H—O té&=1 28
5 =0 até=1 (28)

Note that the expression (12) for the pressure gradient at the tip translates into

am_ 4y &I
0 3(Q, 4TIy dr

até =1 (29)

where {(I1)(1) is a particular weighted spatial average of the net crack loading

2 (M I
<”>:nxf £8)

dé. (30)

J1=&

Actually, {I1) represents a dimensionless stress intensity factor, since the breakdown
condition (14) can simply be expressed as

A1) =1 3

Evolution of fluid pressure and crack opening

Evolution in time of the net pressure field I1(¢, t) and crack opening Q(¢&, 7) is deter-
mined by solving numerically the initial boundary value problem defined by the system of
coupled eqns (26) and (27) together with the conditions (28). The numerical procedure is
based on the method of lines (Liskovets (1965), Nilson and Griffiths (1983)). This method
approximates the set of eqns (26) and (27) by a coupled system of ordinary differential
equations for the values of the net pressure at the grid points over the space interval
representing the crack. Details of the numerical method are given in Appendix B.

The main features of the system response to a linear increase of the pressure at the
boundary are illustrated in Figs 3-9, with the calculations performed for Q, =2, y = 4,

1 —

T I T ]
0 0.1 0.2

T
Fig. 3. Fluid pressure evolution with time along the crack from the inlet, £ = 0, to the tip, £ = 1.
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pressure is almost constant along the crack.
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001 \ \ \

0.005 —

Fig. 7. Elastically induced crack opening plotted along the crack for early times.

2 ' 1 ' 1
0 0.1 0.2

T
Fig. 8. Pressure gradient at the tip of the crack vs time : solid curve obtained by finite difference and
dashed curve using the estimate of the stress intensity factor.

T
Fig. 9. Evolution of the influence function ® and stress intensity factor (IT) with time.
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using 20 grid points equally spaced along the crack. It is worthwhile to mention that the
results produced with 10 grid points are practically the same as those obtained with 20 grid
points.

Consider first Figs 3 and 4 showing the evolution of the fluid pressure variation
(p—p,)/T and scaled opening Q at various positions ¢ =0, 1/9,...,1 along the crack. The
main features of Fig. 3 are the drop of pressure in the crack at early times and the gradual
increase of the pressure towards the prescribed boundary pressure at large time, after
attaining a minimum. This early time drop of the fluid pressure in the crack is directly
attributable to the ““non-local’” character of the crack deformation, which is embodied in
the integral relationship (27) between the opening Q and the net pressure I1. (Similar
behaviors-—sometimes called ‘‘negative initial pressure effect’ or ““reverse pressure effect”—
have been reported in physical pumping tests in jointed rock masses (Pine (1986)) and in
numerical simulations of such tests (Cundall (1991)).) Note that it is implicitly assumed
that the initial pressure p, is large enough that the absolute fluid pressure is always positive.
Nonetheless, the predicted fluid pressure drop implies that cavitation could in principle
take place, although this phenomenon cannot be modelled within the confines of this model
which is based on the assumption of fluid incompressibility.

Figure 4 indicates that the opening increases approximately linearly with time, beyond
7= 0.1 once the fluid pressure is nearly uniform in the crack, see Fig. 3. Figure 4 also
suggests that the early stage of the crack opening can be described in an approximate
fashion by the propagation of an “opening” front. Note, however, that change in crack
width occurs instantaneously all along the crack from the onset of pressurization. It is these
“early” opening changes which, although minute, are causing the early pressure drop. This
isillustrated by the isochrones of the elastically induced crack opening, Q, = Q—Q,, profiles
which are plotted in Fig. 7. This figure gives clear evidence that the crack is closing in the
tip region at early time.

Isochrones of the fluid pressure field are shown in Figs 5 and 6. (Figure 5 shows a
subset of the isochrones at early time, i.e., 7 < 0.05.) Note that the time corresponding to
each isochrone is indirectly given by the intercept yt of the isochrone with the pressure axis
(here y = 4). The early time pressure profiles are characterized by a minimum, which implies
that fluid is flowing back from the tip region. The isochrones of (p—p,)/T for T < 1, (where
7, is the time at which the fluid pressure at the tip reaches its minimum ; here 1, >~ 0.06)
appears to define an envelope, see Fig. 6. It is remarkable to observe that the pressure
distribution is quasi-linear for t > 1, (despite the strong non-linearity of the governing
equations) and that the overall pressure gradient steadily decreases from that time on. At
7 =~ (.15, the crack is virtually uniformly pressurized with the pressure equal to its value on
the boundary.

Finally, the evolution of the pressure gradient at the crack type, é11/0¢ = T~ 'dp/d¢, is
plotted in Fig. 8: the solid line curve corresponds to the finite difference approximation of
the pressure gradient according to (B.10) in Appendix B, while the curve in dashed line is
computed from (29), using the approximation (B.9) to compute the dimensionless stress
intensity factor {I1) and its time derivative.

Asymptotic behavior
First, it is convenient to introduce the function g(&, t), which is defined through the
relation

= y[l+g(S, 7)) (32)

In view of the boundary condition for IT at £ = 1 and the recognition that the evolution of
I1 is governed by a diffusion-type equation (which implies that the rate of change of IT is
initially zero for 0 < & < 1), we have that

. 1 £=0

limg(&,7) = (33)

-1 0<é<l.

Also, the large time limit of g(&, 1) is given by
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limg(&, =1 0<&<1. (34

This limit can be deduced from the following simple considerations. Since the crack opening
Q is unbounded with time t (because of the linear increase of pressure at the crack inlet),
the “‘conductivity” €’ in the lubrication eqn (26) is also unbounded and thus IT is expected
to become equal to its boundary value.

The large time behavior of g(&, t) is of particular interest, in order to determine how
“fast” the net crack loading IT equilibrates along the crack to its boundary value 2yt.
Motivated by the quasi-linear pressure distribution shown in Fig. 6 at large time, we
approximate the net loading by

9.0 =1=r(0)¢, 1>71 (35)

where r(t) > 0 and lim,_ . r(z) = 0. In Appendix C, it is shown that the linear pressure
distribution (35) is a good approximation of the large time solution of eqns (26) and (27).
Furthermore, it is shown that r(t) ~ y~*t~*, meaning that the net crack loading tends to
the uniform distribution 2yt as fast as y~*t~* goes to zero with time 7.

CALCULATION OF THE BREAKDOWN PRESSURE

Time influence function for the stress intensity factor
In view of the representation (32) of I, the dimensionless stress intensity factor <IT)
and its rate of change can be expressed as

Ty = 2y1®(1), 51% = 2y[®(r)+rd(s$)] (36)

where the time influence function ®(z) is given by

1
=~1 =
@ =1+g)

L[, @

X Jo \/] _éz

Note that the influence function ®(z) depends only on the two parameters Q, and y.
Actually, in view of the previous considerations on the dependance of the solution on Q,,
we can write that

O(z:7,Q,) = O(Q7:Q, %), (38)
Also, noting the asymptotic limits (33) of the function g(&, t), the bounds of ®(t) are
ggl(} ®(7) =0

lim &(7) = 1. (39)

Note that ®(0) = 0 is a direct consequence of the fluid incompressibility assumption. (As
a matter of fact, the value of ®(0) characterizes the fluid pressure change in the crack under
undrained conditions, i.e., under conditions when there is no change of fluid mass in the
crack.) Note also that ®(0) = 0 implies that d{IT)/dt = 0 at T = 0, see (36).

Asymptotic behaviors of the stress intensity factor are trivially deduced from (36) and
(39). Note in particular that both {IT) and its rate of change vanish at T = 0. Plots of ®(7)
and {IT>(r) are shown in Fig. 9 (case Q, =2 and y = 4). As expected from the known
behavior of g, neither functions evolves monotonically with time.
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Condition for breakdown
The condition of propagation of the edge crack (i.e., “breakdown™) is given by

M (te) =1 (40)

where 1, is the time at which breakdown occurs. From (36) and (40), we deduce the implicit
equation

277 ®(14 Q. 7) = 2974 D (74 Q, ) = 1 (41)
which can be solved to determine the dependence of the time to failure 7, upon y
T = T4y Q). (42)
The above expression combined with
Pr—Po = ¥TsT (43)
yields the dependance of the breakdown pressure p, on the rate of pressurization y
Po—Po = h(y;Q)T. (44)

From the bounds of the function ®(z), i.e., ®(0) =0 and ®(cc) = 1, it can readily be
deduced that

) i
lim h(y) = 5 (43)
an} h(y) = oc. (46)

It follows from (45) and (46) that a slow limit of the breakdown pressure exists, but that a
fast limit cannot be identified.

Consider first the slow regime (y — 0). In this regime, the fluid pressure in the crack is
virtually equilibrated with the pressure in the borehole at breakdown. From (44) and (45),
the lower bound of the breakdown pressure p, is given by

pg =P + 7‘/2' (47)

This limit actually corresponds to the breakdown criterion proposed by Haimson and
Fairhurst (Haimson and Fairhurst (1967)). Note that the slow pressurization regime 1s
practically reached at pressurization rates y < y,, where the lower bound y, is arbitrarily
defined from

Po(y)) —Ph = 3(ph—p,) (48)

with the relative error 6 taken as 1%.

Consider next the fast regime (y — oc). A fast limit cannot be identified as the break-
down pressure becomes unbounded with increasing pressurization rate. The non-existence
of a finite bound on the breakdown pressure at large pressurization rates is a direct
consequence of the assumption of fluid incompressibility. Indeed, the incompressibility
assumption implies that ®(0) = 0, with the consequence that s#(oc) = co. In other words,
the assumption of fluid incompressibility entails that the fluid pressure inside the crack
can drop to arbitrarily large negative values with increasing pressurization rate, with the
consequence that the breakdown pressure becomes unbounded with increasing y. Obviously,
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Fig. 10. Dimensionless breakdown pressure vs pressurization rate.

this predicted negative fluid pressure is physically meaningless since fluid can barely sustain
any tension. In reality, cavitation would take place and for the fast pressurization regime
we expect the crack to be totally cavitated (i.e., p = 0); hence <{II> ~yt,—p,/T and,
consequently, from (43)

py=2p,+T 49

where pj; denotes the true upper bound of the breakdown pressure.

It is important to note that the Hubbert and Willis (1957) breakdown criterion
p»—P, = T cannot really be justified within the framework of this model. Recall that this
criterion is based on the assumption that the fluid pressure in the crack is still at its initial
value p, at breakdown. Since the fluid pressure can drop below its initial value p,, it is clear
that p, does not correspond to the asymptotic value of the fluid pressure in the fast
pressurization regime. Thus, the Hubbert-Willis limit cannot be considered as an upper
bound of the breakdown pressure when the rock is impermeable (Haimson (1978)).

Variation of the normalized breakdown pressure with pressurization rate y for Q,
varying between 0.2 and 20 is shown in Fig. 10. As was already pointed out, the curves show
that the breakdown pressure is characterized by a lower limit for the slow pressurization rate
but is unbounded with increasing pressurization rates. Hence, there is no finite upper limit
for the pressurization rate for the incompressible fluid model. However, we can establish a
pseudo upper limit 7,, by simply determining from these curves the pressurization rate
corresponding to the true upper bound of the breakdown pressure p;, which arises from
consideration of cavitation in the crack. Correct determination of y, would require, however,
consideration of fluid compressibility and cavitation.

For the pressurization rates y between the threshold values for slow and fast regime,
v <7 <7, the process is in the transient regime, with p, depending on the pressurization
rate 4 and varying from pj, to p; as y increases from v, to y,.

The lower and pseudo-upper limits of pressurization rate (y,,y,) are plotted vs the
dimensionless initial opening Q, in Fig. 11 (y, is here calculated for p, = 0). The graph
shows that the pressurization limits grow monotonically with Q,, while tending to finite
non-zero limits when Q, approaches zero : approximately y, = 0.4 and y, — 8 when Q, — 0.
It also readily seen from Fig. 11 that the ratio y,/y, increases slightly from 20 to 10? with Q,
in the interval (0, 20).

CONCLUSIONS

In this paper a mathematical model is proposed to account for the influence of
pressurization rate on the breakdown pressure. This model is based on the recognition that



Borehole breakdown pressure 3113
1E+4

1E+3

1E+2

1E+1

1E+0

1E-1 T T T T T )
8 16 24
QO
Fig. 11. Upper and lower limit of the pressurization rate vs dimensionless initial opening at the
crack inlet. (Upper limit corresponds to p, = 0.)

o ,_T__I IIIIIIII 1 IllIIIlL | lIIIIIl[ i IlIIIII( | lLIIlll'

breakdown is associated with propagation of preexisting micro-cracks at the boundary of
the borehole. Fluid flow in the crack is governed by a one-dimensional lubrication equation
and is coupled with the non-local elastic response of the crack. Determination of the
evolution of the fluid pressure and crack width lead to unexpected results: one is the drop
of fluid pressure taking place at early times, which for “fast” pressurization rates can lead
to cavitation in the crack ; another is the occurrence of a local back flow in the crack.

Two key dimensionless parameters have been shown to control the magnitude of the
breakdown pressure p,: a dimensionless pressurization rate y and a dimensionless initial
crack opening Q,. A lower limit for the breakdown pressure (consistent with the Haimson-
Fairhurst breakdown criterion) exists in the limit of slow pressurization rate. The cor-
responding lower limit y, depends only on Q,. An upper limit for p, does not strictly
exist within the framework of this model, which is based on the assumption of fluid
incompressibility. Indeed, the fluid pressure in the crack can drop to arbitrarily large
negative values with increasing pressurization rates. However, an upper bound can be
determined by simply recognizing that a physically meaningful limit corresponds to the
case where the crack is completely cavitated at breakdown—i.e., that the fluid pressure in
the crack is everywhere equal to zero. The upper limit of pressurization rate y, depends
on both Q, and p,/T. This bound ¥y, increases with p,/T and consequently the range of
pressurization rate y e(y,, 7.{p./T)) for which the process is in transient regime is stretching
in the direction of larger values of y while its lower bound remains constant with increasing
Po:

Although the actual values for the bounds of the pressurization rate 4 depend on the
parameters of the problem, the ratio 4,/4,= v,/y, depends formally only on the dimen-
sionless initial opening of the crack Q, and on p,/T. As can be seen from Fig, 11 (computed
for the case p, = 0), the ratio varies slightly with Q, and is of the order of 10° for the
considered range of Q,, which corresponds to the typical range of variation of the parameters
describing this problem. This ratio is three orders of magnitude lower than the one predicted
in a previous study (Detournay and Cheng (1992)) and is in agreement with experimental
results (Haimson and Zhao (1991), Schmitt and Zoback (1992), (1993)).

As a final note, it must be emphasized that the incompressible fluid model strictly
applies when the fluid pressure is positive. This restriction actually implies that the model
is applicable over a range of pressurization rates [y, 74], where y, is an increasing function
of p,/T.
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APPENDIX A: IRRELEVANCE OF FLUID COMPRESSIBILITY

In this appendix we demonstrate that fluid compressibility can be neglected. Consider the lubrication equation
for compressible fluid

B e el
ac ‘ag(pg ag) A

where the fluid density p is a function of the fluid pressure p. Now expand the time derivative of pQ

pQ _ p  0Q

LA A2
ot o P A2
Fluid compressibility effects are negligible if
Cp
Yo
= A.
« 0 « 1. (A.3)
P at

An estimate of x can be obtained as follows. First note that the fluid pressure is much smaller than the fluid
bulk modulus Kj, since p = O(T) at most with 7 ~ 10 MPa and K, ~ 10* MPa. Hence, a linear dependance of p
on p can be assumed, i.e.,

p=m0+§) (A4)
1

The time derivative of the fluid density can then be written as




Borehole breakdown pressure 3115

o _pdp_ T(om
ot Kpét —p"K,

a7

where the definition of Il and dg/ér = —y have been used. Taking the following estimates: |0€2/dt| ~ y.
{oIljét| ~ 2y, p ~ p,. and Q@ ~ Q,+1 (which corresponds to the opening at breakdown) we find that

x ~(Qv+l)ET. (A.5)
il

Since £" ~ 10° MPa, w,/i ~ 1077 =102 (/ ~ 1= 10 mm), Q, ~ 107?10, we find that 2 = O (107?) at most. The
number « is then typically a small number and therefore fluid compressibility effects are negligible, according to
(A3).

APPENDIX B: NUMERICAL PROCEDURE

A general method-of-lines numerical approach (Liskovets (1965), Nilson and Griffiths (1983)) is used to
solve the system of coupled eqns (26) and (27) for the pressure IT(£, 1) and the crack opening Q(&,7) for a
prescribed pressure at the crack inlet I1(0, t) and a no-flow condition at the crack tip. The numerical algorithm is
outlined below.

Principle of the general method-of-lines

The method-of-lines can be applied to solve systems of differential, integral or integro-differential equations
in some given domain D™ in an n-dimensional space, n > 2. The essence of the method is to discretize the unknown
functions in an r-dimensional subset of D™ (and not in the original n-dimensional space of the problem, as in
conventional finite difference numerical schemes), while the functions are taken to vary continuously in the
complementary (n—r)-dimensional space (Liskovets (1965)). The initial system of equations on D is then
reduced to a system of equations on a certain domain D"~ of lower dimension, provided that the boundary
conditions for the initial system, given on @D, can be appropriately transferred into the boundary conditions on
D™, If r = n—1, the initial system is reduced to a system of ordinary differential equations (or mixed system
of ordinary differential and integral equations on D'V). If r = n the initial system is transformed into a system of
equations on D or, in other words, to a system of algebraic equations (as in conventional finite differences
schemes).

Numerical algorithm

The algorithm relies on the so-called “longitudinal” scheme in which the discretization is performed with
respect to the spatial coordinate ¢ and a solution varying continuously in time 7 is sought. (In the ““transverse”
scheme, time is discretized and the solution is continuous in the space coordinates.)

First, a set of equally spaced fixed grid points {&}, i=1,...,M with ¢, =0 and &, =1 is selected. The
dimensionless net pressure IT is then approximated with order of error O(AZ?) (A€ denoting the grid step) by a
piecewise linear function defined by it values {I1(7)} at grid points {&}

i O, -0, ., .,
e =M+ S——- g (-8 Celendi. (B.)
Si+l TS5

Next the dimensionless crack opening Q, corresponding to the piecewise linear net pressure distribution (B.1), can
be computed according to (27)

M
Q1) = QO+ ¥ SO (). (B.2)

The influence coefficients E, for a constant grid step &;, , — &, = A¢, Vi are given by the following formulae

<.

i 1
E (= [GB(W)'ZEG‘:('I)’(GI('LQ)* ZEQ(%@))]

1 =50
{[awo-ewa ] .
=&, dmax{¢.é

Af[(h (m—G.(n. &, )]Sn:in(i.i:)

min(:.¢,)

@)=

1 max($.$;)
Aé max(¢,&,)

1 .
+ E[Gz(ﬂ~ C)]:‘:] ,

max(2.2,)

1 .

+ [K;[G:(n‘ DNz +2(Gm =G (1. &) — 5 (Galn) — Ga(n, «fz))}
I

+ [[20; n.9— A_gGl(”’ ’C)J

o=
(=¢,
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Ed6) = @/ () + 01 (Q)

| (=4
+Hi01(n,l)—A—£Gz(mC)]‘ [ (i-2)G,(n.0)
i=¢,

o oo e
¢,y dmax($.¢,

for3<i<M-2

Epa (&) = @41 () + 051 (8), Ep(d) = OH(2).
The functions appearing above are defined as
max($.£)

1
/(&) = [—(i*2)(G3('1)—Gx('I, SN+ E(G4(")_G2(”’ 5,4))]

max(¢.8._ )

) ., 1 . =<, maxig.:g, )
[_('_Z)G‘("*HA(GZ("’S):I, .

=5,

7 (8) =

1
+iG3 () — G (n.€)) + Ié (Gy(n, &) —Gs(n))

max(s.z,)

d / d
G.n (8 = j G i =" fl(, ylemndn =12
7 =& Nt

Ly C)zr—_‘f@/”)dg x=1,22
(1, \ \/rr]z—_iz > »
where we use the convention that
9. 01 = gon. =g, ), [A(]: = h(b)—h(a), Yg(*,*),h().

The integrals 1,(#, {) and G, ,(n1; &) can be solved analytically ; their close form expressions are given below

I (n,{) = x, arcsin <,,)+Xz 1*<§>_,
v\ 2 . . 5
s fon G -l

Gi(n;8) =4, {n vt — & — 8 Inn+/n° — 8%}

. 1
G4(n;é)=f2)cz{( xvé+—">\m -& +2x.c In(n+/n* - )}

However G,(n,(; &), « = 1,2 cannot be evaluated in terms of elementary functions and needs to be calculated
numerically for each combination of the arguments.

The lubrication eqn (26) can be integrated with respect to & from &;_, , to &;_, , for j taking values from 2 to
M—1and from ¢, to &, = 1 to yield

M

}: O,I+0(A) =AQ, j=2.....M—1 (B.4)

®M|H +O(AL) = AQ,,

"M:

(B.3)

where

AQ,i=0Q, 12— CQiii2y AQu=0n12—Q

My

9,1-Eﬁ'”3f(é)dc' EAEHOAEY, j=2,....M—1,

Yo r = AS SN o o x
6, = E(f)dE=E,. vai +0(AE%), E,=E(S.).

The right-hand sides of equations (B.4) and (B.5) are approximated to A¢* as follows
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m,, -1 n-n

AQ, = Qs QL 0 (B.6)
IT,, — 1,
AQy = — Qi1 =57 +0(AE) (B.7)
with
Q+Q2
Q?—I , = 'J 5 j—1

Note that the zero-flow boundary condition at the tip of the crack, Q,, = 0, was utilized to obtain (B.7).
Substitution of (B.6) and (B.7) into eqns (B.4) and (B.S5) together with the initial condition and the boundary
condition at the crack inlet, (28), yields a system of ordinary differential equations in time with unknowns IT,,

Ag

i

EIL =0 M., —T)-Q LdL,-I,_,), j=2....M-1

=

!

| .. .
EAf" 2 Ep-1all; = “Q;\I—I’Z(HM‘HM—])S (B.8)
i=1

with
N(t=0)=0, j=1,...,.M and I, (z) =2yt

The system of ordinary coupled differential equations (B.8) is solved numerically by means of a modified Runge-
Kutta 5th order numerical scheme with adaptive time step to preserve desired accuracy (Press et al. (1992)).

Calculation of the breakdown condition

In order to monitor the breakdown condition (40), (IT) (r,) = 1, the stress intensity factor has to be evaluated
numerically. We use the piecewise linear distribution (B.1) for the net pressure to obtain an approximation for
the dimensionless stress intensity factor <IT), which is calculated by integrating exactly (30)

S .
<)) = Z [a! Y () +ai Yo(&) +a] Y5(O)]iZh + O(ALY) (B.9)

where
arl = % (IL— (i~ 1)1, —IL)),
@ = z—é (I, , — ) — 2% (T, — (i— (L., , ~ 1)),
3 X2
a; = - ZE(H|+I —1I1),
and

Yi(@) =arcsin(), Yy(8) = —/1-8, Y3(&) = { V(O +EY2().

Note that the solution of (B.8) can be checked by comparing the analytically estimated value of pressure
gradient at the tip of the crack (29) (which requires calculating the stress intensity factor and its time derivative
at each time step using (B.9)) with the finite difference approximation

an
2.,

1
=K€[3HM74HM71 *H.»1—2]+0(A§2) (B~]0)
APPENDIX C: ASYMPTOTICS CALCULATION

We seek to determine whether the linear pressure distribution assumed for large time, see (35), is consistent
with (26) and (27), and also how “fast” the pressure distribution along the crack tends towards the uniform value
2yt. The crack opening corresponding to a linear net pressure distribution, given by (32) and (35), can be deduced
from (27) to be

Q=0Q,/1-8+y120,8) - D), ()] (€n

where the function w,(§) is given by
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@,(£) s4(x| ~2%)(xw”lff2+x:§ln< ;)) (C2)
1+/1=-¢

(An expression for w,(¢)—the elastically induced crack opening due to linear pressure distribution along the
crack—could also be derived. but for the following considerations it is only of interest to know that this function
is bounded.) Substituting (32) with (35) and (C.1) into the lubrication eqn (26) and dropping the terms of order
7%, o < 0 (assuming that () ~ t#, § < —1) leads to

@,(<)

- =t (1) (C.3)
8y (] (&)

where “ here denotes the derivative with respect to ¢. The relation (C.3) requires that
r(ty = At~ (C4)
Solving the differential equation (C.3) for w, yields

—
w,(6) = [— (3

Vi2pa

Comparison of the expression (C.5) for w,(<), obtained through the lubrication equation, with (C.2), calculated
directly by integration of (27), shows that the two expressions give virtually the same crack opening, provided
that

A =(57/12)72y 3 = 0.00256y °. (C.6)

So, indeed, the net crack loading I'l can be approximated by a linear function (35) for large times. Furthermore,
I1 tends to the uniform distribution 2yt as fast as 77>t~ goes to zero when 1 — .



